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DIFFRACTION OF A SHORT ACOUSTIC WAVE BY A SMOOTH BODY WITH 
A DISCONTINUITY IN THE RADIUS OF CURVATURE OF ITS SURFACE* 

V.N. LIKHACHEV 

The propagation of a short acoustic wave in an ideal fluid when the 
radius of curvature of the wave front is discontinuous is considered. 
Such a wave arises if a short acoustic wave with a continuous radius of 
curvature is reflected from a smooth body whose surface has a 
discontinuity in the radius of curvature. The size of the body and its 
radius of curvature are assumed to be much greater than the wavelength. 

In the immediate proximity of a body, an incident wave is reflected as a locally plane 
wave according to the laws of geometrical acoustics. Further from the body, geometrical 
convergence or divergence of rays begins to have an effect, and this determines the wave 
dynamics. If one of the radii of curvature of the body has a discontinuity along a line, the 
radius of curvature of the wave front also has a discontinuity, which lies on rays that 
originate from the points of the radius-of-curvature discontinuity line on the body surface. 
The geometrical acoustics solution produces 
different sides of these rays, i.e., 

different values of the wave amplitude on 
it has a strong tangential discontinuity and is thus 

inapplicable in .the neighbourhood of rays that correspond to the curvature discontinuity of 
the wave front; diffraction of the reflected wave is observed in this region. We will derive 
a solution that describes the reflected wave everywhere, including the diffraction zone. The 
solution is obtained by matching asymptotic expansions, 
applied to a number of other problems /l, 21. 

a method which has been previously 
The transverse profile of the wave is 

arbitrary and it is only required to satisfy the condition of zero perturbations on the 
leading characteristic. 

Different wave-front geometries are possible. If the front is convex on both sies of 
the discontinuity, the diffraction zone goes to infinity. An interesting application of this 
problem is the design of a focusing reflector with a rounded edge. In this case, the 
intensity of the wave reflected from the concave reflector increases near the focus, while 
the intensity of the wave reflected from the convex edge decrease. The diffraction zone 
where these two geometrical acoustics solutions are matched may play an important role in 
flow calculations in the focal zone, because the opening angle of the focused wave decreases 
as we approach the focus while the diffraction zone increases. Our solution makes it 
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possible to describe this process and to find 
allowing for the reflector edge effect, which 
zone. 

A wave front with a discontinuous radius 
a radiator of a similar shape on a fluid. 

The advantage of the proposed solution 

the asymptotic behaviour of the converging wave 
is needed to construct the solution in the focal 

of curvature can also form due to the action of 

is that it does not necessitate expanding the 
original wave in a superposition of harmonics. The reduction of the unsteady problem to a 

steady problem has a number of drawbacks. First, the inverse integral transform is a complex 

operation, and second, the final solution virtually eliminates the zone of dependent 

perturbations, which is characteristic of hyperbolic equations. This is an important point, 
especially because we repeatedly use passage to the limit in order to determine the 

asymptotic expansions. If the profile of the original wave is a function with a compact 

support, say, then it can be continued by an non-zero function. In the linear approximation, 
this continuation does not affect the solution that propagates along the characteristics 
originating from the points of the initial profile. Yet the expansion coefficients in Fourier 

or Laplace series depend on the complete distribution of the parameters in the original wave, 
including its arbitrary continuation. 

I. Statement of the problem. Fluid flow is described by a system of Euler equations. 

Introducing the characteristic length of the incident wave Z, and the characteristic velocity 

PO? we change to dimensionless variables and define a small parameter E: 

where I, y, f, U are the Cartesian coordinates and the velocity in this system of coordinates, 
t is the time, ji is the pressure, fi is the density, and PO is the density of the unperturbed 

medium. We deine p by the formula p" = 1 + 8~. 
After linearization with respect to F for low-intensity waves, the system of Euler 

equations takes the form 

au/at = --VP, Eap/at + vu = 0 (1.1) 

We assume that the size of the body is much greater than the characteristic length of 

the incident wave. In this case, both the incident and the reflected waves in the neighbour- 
hood of the body may be regarded as locally plane waves obeying the laws of reflection of 

geometrical optics: the phase distribution is preserved, and only the direction of propagation 

of the wave changes. 
In the neighbourhood of the body, the reflected wave front has the shape of a surface 

with a discontinuous radius of curvature. The equation of this surface is written in the 

form r = r* (p, y) (r = (2, y, 41, where p and y are surface coordinates. We introduce the ray 

coordinates i% y, 0, 1: 

r = r* (ik 19 + n* (Bv Y) 6 t = tT 
[arvafi x away1 n* = , Iar.,ag x ar.,ayl , 

We choose the coordinate lines p = const and y = const to coincide with the principal 

directions of the initial reflected wave front. Then the principal curvatures of this surface 

are given by 

& = (ar*/ap)x, g& = (ar*/ay)* 

The system of Eqs.tl.1) in ray coordinates takes the form 

au’ aP 1 au= aP ' aoa aP 
at= ---7 

afi g0s dt=---* 8Y gqq dt=-ao 
(1.2) 
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In formula (1.2), the lower sign corresponds to the concave front and the top sign to 
the convex front, and U', U2 and u3 are the contravariant velocity components in the 
coordinate system p, y, a. 

The reflected wave profile in the neighbourhood of the body has the same form as the 
incident wave profile. Assume that it is given by the function 

p = U's-'/l = U&-J/I = u, (fj, y, o - t&-V*) (1.3) 

We will now determine the initial profile of the wave generated in the fluid by the 
action of a three-dimensional radiator that moves according to the law 

rp = r* (B, y) i- n*c, (B, 7, t), u,, = ac,iat 

The ordinary kinematic condition is defined on the radiator boundary. 
We will construct the solution in the neighbourhood of the radiator for small times (the 

time is measured from the moment when the radiator starts moving), assuming that the radii of 
curvature of the radiator are sufficiently large: Rx = r@"'- E-V* (k = 1,2). The law of 
motion of the radiator must satisfy the condition 

Under these assumptions, in the main approximation for o = bP (p,v,t) 

I73 = u, 

The small-time zone is determined by the scales 

U _ 1, t zz t#* - &I/‘, u3 = u - E’/‘, fi, y - 1, u’, 

p--E, p-l 

In system (1.2), all the surface geometry terms drop out in the main approximation. Hence 
we obtain a wave in the form (1.3). 

In the geometrical acoustics zone, the variable scales are given by 

p, y - e-‘11, 5 = u - te-‘1. - 1, t - 1, U’, uz - e 
u3 = El’* (U, + &W* + . . ), p = p1 + &“‘p* + . . . 

From system (1.2) we obtain a transport equation for pl, using the condition for the 
system to be consistent in the second approximation. After that, matching the general trans- 
port solution with solution (1.3), we obtain the ordinary geometrical acoustics solution /3/ 

p1 = (rlr*)".(rI - t)-‘l*(rz - t)-“.U, (p, y, 5) (1.4) 

Consider a radiator with a discontinuity in the radius of curvature for p = 0 : limg.++orl 
= r1 i . The radius of curvature r2 is continuous everywhere. The system of ray coordinates 
acquires a singularity for fi = 0. We therefore continue using the ray coordinates, but 
separately for the regions fi> 0 and fi< 0. For fl = 0 the solution (1.4) has a discon- 
tinuity and a diffraction zone is formed near fJ = 0 

2. Constructing 
that &P=g&=l. 
radiator surface is 

the sO&%m in the diffP&?tiCVI ZO?ZQ. Take the coordinates p,y such 
Since Rk - da, the characteristic scale of variation of p on the 
s-V.. Define the diffraction zone by the scales 

fi = p*E-'$ 5 N 1, t - 1, p = p1 + E'i.& + . . . 
us = E’hI + EU* + . . ( U’ = e*f’ (ul* + &‘h,* + . . .), 

uz g.?, y - &-l/s 

(2.1) 
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To fix our ideas, we will assume the wave to be concave in both principal directions, 
both for p>O and for f3<0. Substituting the expansion (2.1), we reduce system (1.2) 
to an equation of sound beams allowing for the geometrical convergence of the front /4/ 

Taking rh. = rh. (0,~). we obtain 

dr,lq=J* - &". < 1 (2.3) 

Using (2.3), we can factor out (1 - t/r,)% from the derivative in the main approximation 
in (2.2), and in the diffraction zone r2 (fi, y) = r2 (0, y), rl (fi, y) = rl* (0, y) (plus for p > 0, 

;n; n$n~s for p(O). Therefore, in what follows, r2 in the diffraction zone stands for 

2 7 
Introducing new variables in the regions B>O and fi<O according to the formulas 

p1 = a* I(1 -L/r&l - t/r,*))-'1.. we obtain the equation 

(1 - t/r,*)-vm/ag** - a=wja5at = 0 (2.4) 

Assume that the oscillation velocity of the radiator or the tangential distribution of 
perturbations in the original reflected wave (1.3) is continuous over the surface. Then we 
have the matching conditions 

liq.,+_Q* = lin,r-oQ* = limg-.oU,(B,y, E) = u,(O,Y,E) (2.5) 

The condition for p* = 0 must be added in order to close each of the problems (2.4) 
and (2.5). To derive the condition for p*=o, note that system (1.1) directly leads to a 

wave equation for p1 in the diffraction zone. Seeing that the wave is sufficiently smooth, 
we use the Poisson formula to derive the condition for p* = 0. 

Define the Cartesian coordinates z1 = Z&l/*, y, = y&'/z, z1 = ZE'/~, directing the x-axis 

along P, the z-axis along y at the point (b = U, y, c = O), and the y-axis in the direction 

of wave propagation. Then the wave in the neighbourhood of the radiator takes the form 

PI* If=0 = u,, (0, Y, E.*), E* = Y - 1/1x12/r,* - '/2z12/r, 

In order to find the solution at the point (0, Y,, 0, t) I we have to integrate in Poisson's 

formula over the sphere (yl - y,)’ + 522 + 222 = t*. Introducing the polar coordinates .Q = 

p cos 'p. a2 = p sin cp, we obtain 

(2.6) 

cpl+ = -n/2, 'pz+ = 'pl- = n/2, 'pz- = 3n,/2, /L*' = (t - yJ/A* 

A* = 1/a [co? 'p (l/t - l/r,*) + sin ' cp (l/t - 1/r2)l 

In deriving formula (2.6), we have used the fact that a short wave is locally plane, and 
we accordingly take the derivative with respect to E in the second integral. 

Because of the short-wave properties of the pulse (p/t< p/r$<OO)r we obtain the first 
terms of the phase expansion in the form 

E* (I". cp) = Y, - t + CL'A* (2.7) 

From (2.6) we obtain, using (2.7), 

(2.8) 

Dropping the first integral in the main approximation in (2.8), we obtain the final 
condition for p*=o: 

p1 (0, y, 0, 1) = l/quI, (0, y, EN1 - t/r&"* [(I - t/r,*)-"2 + (1 - 
t/r,-)-".] 

(2.9) 
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Formula (2.9) is the expression of a simple geometrical fact: on rays corresponding to 
the discontinuity in the geometrical front, the wave amplitude is half the sum of the 
amplitudes obtained from the limiting values of the geometrical acoustics solutions on both 
sides of the discontinuity. 

Given the additional condition (2.9), we can reduce the flow calculation in the dif- 
fraction zone for p* >O to the following problem: 

aqO/afi** + aZQ,O/a%VT = 0 (%" = -% > 0) (2.10) 

810 Ip.4- = O, Q," IT=0 = 0, 8,’ Ifl.co = f (ED, T) 

QIO = Q+ - u, (0, y, E), T = 1 (1 - t/r,+)-’ 

f (P? T) = ‘/aUp (0, y, -5”){[(1 - t/rl’)(i - t/rl-)-‘]‘l* - I} 

Taking the Fourier sine-transform by B*, we obtain a Goursat problem for the transform 
with values on the characteristics, 

The Riemann function of Eq.(2.11) is 

u (%I’, T,; E”, T) = Jr, 1% 1/(T - T,)(-%,” + %‘)I 

where Jo is the zeroth-order Bessel function. Integrating (2.11) over the rectangle with 
the vertices (0, 0), (go, O), (T, E"), (0, T), we obtain 

Q; (5'7 T) = h !s u (%I", T,; E", T)f (Et, T&W’, 

Making the change of variables h. (T - T,)= T,, h(-_5,0 +E")= EO and taking the inverse 
Fourier transform, we obtain the solution in the diffraction zone for p* >0, 

To find the solution for fi*<o, it suffices to note that substituting B1* = -fi* we 
obtain for 52," precisely the same problem (2.10) in the variables fir*> E", T with the sole 
difference that rl+ and rl- must be interchanged everywhere. The solution for p*< 0 
therefore differs from (2.12) by its sign and by interchanging rl' and rl-. 

Solution (2.12) and the corresponding solution for 8'<0 have a removable discon- 
tinuity. Indeed, 5&O 18*=o = 0. However, the last condition in (2.10) holds if we use the limit 

as p*- $0. This is directly verified. 
The solution of the problem in the diffraction zone is continuous for p* = 0,' but its 

tangential derivative with respect to $* is not continuous for B*=O. Is the weak discon- 
tinuity a consequence of the discontinuous initial condition or a deficiency of our asymptotic 
solution procedure? Another question is the applicability of Poisson's formula to derive the 
condition for B*=O. 

The initial values in Poisson's formula have the form 

Hence it follows that for B* =0 (or x1= 0) the functions (2.13) and their first space 
derivatives are continuous, while the derivative 

(2.13) 

has a discontinuity. At the same time, Poisson's assumes the continuity of the first three 
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derivatives of these functions. The values (2.13) used to derive the condition (2.9) are 
therefore insufficiently smooth. 

The initial values (2.13) can be smoothed by altering them in an arbitrarily small 
neighbourhood of z1 = 0 so that the smoothed values are thrice differentiable and the first 
derivatives are arbitrarily close to continuous first derivatives of (2.13). For such smooth 
initial conditions, Poisson's formula produces the classical solution of the wave equation. 

This argument leads to the conclusion that condition (2.9) on rays corresponding to the 
wave front discontinuity may be obtained by passage to the limit in smoothed initial conditions 
uniformly close to (2.13). 

Condition (2.9) thus indeed corresponds to a discontinuous wave front. Moreover, the 
weak discontinuity in the solution lies on the bicharacteristic of system (1.1). 

3. .Yized expansion. The mixed expansion describing both the geometrical acoustics zone 
and the diffraction zone has the form 

A* = [I + (T* - T,,/h)(l/r,+ - I/?--)]-'!~ - 1 

T+ = tr,*/(r,* - t) 

Thus plus sign corresponds to B > 0 and the minus sign to p<O. 
The solution can be generalized to the case of arbitrary combinations of convexity and 

concavity in any coordinate; for example, the wave may be concave for B<O# convex for 
B>O, and concave in v_ The principle of the solution in this case may be formulated in 
geometrical terms: problem (2.10) remains as before, the wave amplitude for p* = 0 equals 
half the sum of the limiting values of the geometrical acoustics solutions for any body geo- 
metry. 

4. Investigation of the solution near the focusing zone. Consider the case when the 
wave is concave both for @>O and for p<O, but rl->rl+. Let i-?> rl+, i.e., focusing 
is first by p for @>O. 

For t -+ rl+ we have T+ + 00 , and after somesubstitutionsin (3.1) we obtain the 
asymptotic expansion of p1 near the focusing zone in the form 

~1 = IAt (l/r,+ - l/r,)]-"% (U,, (0, y, 5) - I(At/r,+)"*(l - rl+/rl-)-'/. - (4.1) 
11G (By 5)) 

R = p* T++, At = rl+ - t, D = 2ol/-5/R 

Solution (4.1) holds for p* < &-'I*. In the main approximation, R = fi* At’l+l+. Solution 
(4.1) therefore describes a transverse wave propagating along the wave front. Since G depends 
on time and the longitudinal coordinate p* only in the combination b*At'f*, the diffraction 
zone for At+0 increases in proportion to At-'/p. There is an analogy with the spread of the 
zone of instantaneous heat release at a point. The only difference is that the amplitude in 
the heat problem decreases and in the focusing problem it increases; time in the heat problem 
goes to infinity and here At -ho. However, in both cases, the waves preserve their similarity 
over time, and the similarity parameter follows the same parabolic dependence fl*At'ls = eonst. 
In other words, the solution (4.1) is selfsimilar: for wave focusing near the focus (but not 
in the focal zone itself), the transverse wave profile can be constructed by a simple change 
of the time-dependent coefficients, the function C is a selfsimilar. 

5. The effect of (1 narrow zone of high gradients in the wave profite on diffraction. The 
wave profile U,,(p,v,t) may have a zone of high gradients in the neighbourhood of some E. 
For instance, when a shock wave propagates in a low-viscosity medium, a zone of high gradients 
describing the shock wave structure develops in the neighbourhood of E=O. In order to 
allow for this boundary layer, we naturally need to investigate equations with viscosity. It 
is interesting to establish the effect of this zone in the ideal fluid framework. 

The solution (3.1) describes a wave whose width is of the order of 1. To fix our ideas 
we will assume that the thin layer is in the neighbourhood of E=U and its width is of the 
order of Q<I. The smooth wave profile has the form 
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u,J (p, y, E) = U,,’ (P, Yv E) i up2 (P> Yt E/e,) 
where U,? (p, 7, U) = -UP" (fi, y, U) # 0, u,," = () for E/e, < Et < 0. The function U,,' has a dis- 
continuity at E = 0. 

As we move away from E = 0 to a distance much greater than Q, we can use in the main 
approximation the limiting function in formulas (3.1). 

To this end, we have to show that this assertion holds for the integral term in braces 

in (3.1). Let us estimate the integral 

I, = m sin (I&“‘) dh 

-A6 ATf 

s h s Ul~(O,,,kk$+ 5 J,@I/fPTa)A*dTs 
0 0 0 

(5.1) 

After the change of variables (5 + E.&V% = 6, AT, = T, , we can show that for t>&el the 
integration over &.in the integral obtained from (5.1) should be carried out from Et to 
zero (because UP* has a compact support). Therefore, for E.>e& we can pass to the limit 
as & - 0 in the integral over T,. As a result we obtain 

In view of the convergence of the integral with respect to h, we obtain I,-Q. i.e., 

for E > EP, a limiting discontinuous function may be used in the main approximation in the 
integral and certainly in the term outside the integral in (3.1). 

6. pocusing of a wave with a step profile. Consider the focusing of a wave with a step 
profile UP= i for E<O and r_iP= 0 for E > 0. Assume that the discontinuity is smoothed 
in some thin layer near E=O. As we have shown in Sect.5, the limiting discontinuous function 
may be used in the solution at distances much greater than the width of the smoothing zone. 

Using (4.1) and taking the multiple integrals, as at the end of Sect.2, we make the 
change of variables -2QfqYl8' = h1 and use the table of Fourier transforms of Bessel func- 
tions. This gives 

p1 = [,At (I/Q+ - ilrJ]"'A (8.1) 

11 = 1 + [(~l-At)'lVIC-"* (rl- - r;F)-". - 11 x (i/2 - l/n-' arcsin$), 

O<$<l.B>O 
a=*,*>1,B>O 
0 = (-At/E)"'~*/(2r,+) 

The solution (6.1) clearly illustrates the following property of waves with a narrow zone 
of high gradients: the closer the phase 5 approaches this zone, the smaller is the dif- 
fraction zone. In the limit of an infinitely thin layer of high gradients, the solution in 
the neighbourhood of the boundary layers obeys the law of geometrical acoustics, which in this 
case produces a strong tangential discontinuity. 

Consider a cylindrical converging wave with R,= m, R,,= 0.5 m, which is matched to the 
wave with R,, = 0.8 m and wave width 2, = 10-a m. Define the angle 9 = p*l(R,le"A) as shown in 
Fig.1. Then e=o is the ray where the two wave parts with different radii are matched. 

Fig.1 shows the boundary of the diffraction zone 81 = 21/=F&%/fi in polar coordinates 
for the case E = 10-d. Curves I, 2, 3 correspond to phase values E= -0.3; L0.5;-0.8. As 151 
decreases to zero, the diffraction zones (under the curves 1, 2, 3) also decrease and go to 
e = 0, although non-uniformly: for any E near the focus the diffraction angle 13~ may become 
a maximum (depending on the aperture angle of the initial wave). The curves in Fig.1 are 
shown up to 8l = 80". 

The existence of the finite boundary 8, where the solution reduces to the geometrical 
acoustics solution is a consequence of the passage to the limit that produces (6.1). The non- 
uniform behaviour of the diffraction zone boundary as a function of the phase is a consequence 
of the high-gradient zone. We naturally expect that for slowly varying waves with gradients 
of the same order of magnitude, the diffraction-zone boundary will depend uniformly on E. 

Denote by AR the distance from the wave to the focus. Fig.2 shows the wave profiles for 
At = 0.15 (AR = '/,R,,, curve I), for At = 0.08 (AR = 0.16R,,, curve 2) , and for At= 0.05 (AR = O.iR,,, 
curve 3). In all cases, the phase is E= -0.5. As the wave approaches the focus, it becomes 
less steep. The diffraction wave reaches its limiting value (corresponding to geometrical 
acoustics) with a break in the graph. This drawback is the result of the passage to the limit 
that produces (6.1). 
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Fig.1 Fig.2 

q 3 

I 2 
0 ’ ai a2' 0.3 

AT/f,, 

Fig.3 

Fig.3 shows half of the same (symmetrical) cylindrical wave as in the previous case, in 
polar coordinates. The pressure p1 is measured from the corresponding circles 1, 2, 3 along 
the normal to these circles. In dimensionless units, 
of the wave in position I in Fig.3 equals 3. 

the intensityof the,non-diffracted part 
The circles 1, 2, 3 are the leading fronts of 

the wave at various distances from the focus. The phase is 5= -0.5. We see that the focusing 
wave is replaced by a diffraction wave due to the wave propagating along the wave front. The 
size of the diffraction zone is independent of the wave geometry, i.e., of the radii R,, and 
% , and is determined only by the phase and the time. 
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